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Abstract:
Drought forecasting is a critical component of drought risk management. The paper describes an approach to
drought forecasting, which makes use of Artificial Neural Network (ANN) and predicts quantitative values of drought
indices – continuous functions of rainfall which measure the degree of dryness of any time period. The indices used are
the Effective Drought Index (EDI) and the Standard Precipitation Index (SPI). The forecasts are attempted using different
combinations of past rainfall, the above two drought indices in preceding months and climate indices like Southern
Oscillation Index (SOI) and North Atlantic Oscillation (NAO) index. A number of different ANN models for both EDI
and SPI with the lead times of 1 to 12 months have been tested at several rainfall stations in the Tehran Province of Iran.
The best models in both cases have been found to include, among the others, a corresponding drought index value from
the same month of the previous year. Both best models have the R2 values of 0.66-0.79 for a lead time of 6 months, but
it is also shown that the EDI forecasts are superior to those of the SPI for all lead times and at all rainfall stations. The
better performance of the EDI model is illustrated by its more accurate prediction of the overall pattern of ‘dry’ and ‘wet’
conditions. The structure of the model inputs (previous rain and drought indices) does not vary with the lead time, which
makes the models very convenient for the operational purposes. The final forecasting models can be utilized by drought
early warning systems, which are emerging in Iran at present. Copyright © 2007 Royal Meteorological Society
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INTRODUCTION

Drought is a temporary and recurring meteorological
event, which originates from the lack of precipitation
over extended period of time. It is a normal part of
any climate and, perhaps, the most complex natural haz-
ard, because it develops slowly, is difficult to detect
and has many facets in any single region. The success
of drought preparedness and mitigation depends, to a
large extent, upon timely information on drought onset,
development in time and spatial extent. This information
may be obtained through continuous drought monitor-
ing, which is normally performed using drought indices.
Drought indices are continuous functions of rainfall
and/or other water-related variable(s) or temperature (e.g.
http://www.drought.unl.edu/whatis/indices.htm). They
reflect emerging drought severity and can be used to
trigger drought contingency plans, if those are designed
and supported with appropriate institutional structure and
responsibilities. Indices like Palmer Drought Severity
Index (PDSI), Deciles or Standard Precipitation Index
(SPI) are well known and frequently used in drought
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monitoring, as shown, e.g. in (Boken et al., 2005). How-
ever, monitoring, although useful for identifying early
signs of droughts, detects only events that are already
happening. The major challenge is to predict the future
drought periods and their extremity – i.e. to enhance the
early warning capability of drought monitoring systems
through drought forecasting.

Various tools and methods for drought forecasting have
been suggested and tested in different regions over the
last decades. The two predictants most commonly used
in medium-range climate forecasting are El Niño South-
ern Oscillation (ENSO) and North Atlantic Oscillation
(NAO) indices (Hurrell, 1995; Nicholson and Selato,
2000; Trenberth and Caron, 2000). The ENSO is an
anomalous large-scale ocean-atmosphere system associ-
ated with strong fluctuations in ocean currents and surface
temperatures. NAO is the dominant mode of winter cli-
mate variability in the North Atlantic region ranging from
central North America to Europe and much into Northern
Asia. ENSO and NAO have different impacts on cli-
mate throughout the globe. For example, ENSO is a good
indicator to droughts in Australia (Chiew and McMahon,
2002), but not necessarily in central and northern parts of
Asia (http://www.fao.org/sd/eidirect/eian008.htm). Both
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phenomena can point to the possibility of a dry or wet
period, but they do not indicate the anticipated severity
of dryness or wetness, which is the most critical type of
information for water resources management.

Application of statistical models has a long history in
drought forecasting. It goes back to Gabriel and Neu-
mann (1962) and Torranin (1976) who were the first to
apply Markov and regressions models for drought fore-
casting respectively. The recent decade has seen a wide
application of new statistical technique known as Artifi-
cial Neural Network (ANN) – ASCE, 2000; Govindaraju
and Rao, 2000. The superior performance of the ANN for
short-term streamflow forecasting in the Winnipeg River
system (Canada) within a stochastic-deterministic water-
shed model was described by Zealand et al. (1999). Jain
et al. (1999) compared ARIMA time series model and
ANN for streamflow forecasting in India and again con-
cluded in favor of the ANN approach. Thirumalaiah and
Deo (1998) demonstrated the ability of ANN to accu-
rately predict hourly flood runoff and daily water stage
in real-time. Birikundavyi et al. (2002) established that
ANN outperformed a conventional conceptual model in
forecasting of daily streamflow in the Mistassibi River
in Quebec, Canada. Wang et al. (2006) used ANN to
forecast daily streamflow from streamflow records alone,
without employing exogenous variables of runoff gener-
ating process such as rainfall. Hall (1999) applied ANN
for rainfall forecasting in Texas, Kuligowski and Barros
(1998) – to predict 6-h rainfalls in two drainage basins in
Pennsylvania, Luk et al. (2000) – for short-term rainfall
forecasting within a flood warning system and Ramirez
et al. (2005) – for daily rainfall forecasting. As a rule,
forecasts of precipitation and streamflow by means of
ANN are based on past observed data of these variables.
Overall, medium or long-term streamflow and rainfall
forecasts using the ANN received less attention to date.

This paper examines the utility of ANN approach for
medium and long-term forecasting of both the likelihood
of drought events and their severity. The study is carried
out in the Tehran province located in the northern part
of Iran (Figure 1). The province has the total area of
17 250 km2, the population of 14 million people and the
mean annual precipitation varying from 700 mm in the
north to 120 mm in the south. Similarly, to many other

parts of Iran, the province experiences frequent droughts
and research is under way to develop appropriate drought
monitoring procedures. Morid et al. (2006) compared the
performance of seven indices for drought monitoring
in this province, including Deciles Index (DI), Percent
of Normal (PN), Standard Precipitation Index (SPI),
China-Z Index (CZI), Modified CZI (MCZI), Z-Score
and Effective Drought Index (EDI). The comparison of
indices was based on drought events that they detected in
the Province over the 32 years, using the observed time
series of monthly rainfall. The results reported by Morid
et al. (2006) illustrated the superiority of the SPI and
EDI in detecting the onset of droughts and their spatial
and temporal variation – compared with other indices.
These two ‘best’ indices are therefore also used in this
study – both as predictants (inputs to the ANN) and
predictors. Other inputs to the ANN include large-scale
climate signals describing ENSO and NAO phenomena.
The avid focus on drought indices per se, as opposed to
rainfall amounts is one novel aspect of the study. Another
novelty is the lead time of the forecast, which ranges
from 1 to 12 months, which is the crucial lead times
for drought risk management in particular and for water
resources management – overall.

DATA AND METHODS

Rainfall data and drought indices

Observed monthly and daily rainfall data from six
meteorological stations (Dehsomeh, Siera, Mehrabad,
Abali, Ammameh and Firozkoh) located in different
parts of the Tehran province, have been selected for
this study (Figure 1). The length of available records
at these stations is from January 1970 to December
2000. The accuracy of all data sets was evaluated using
nonparametric tests described in Pilon et al. (1985),
including Mann-Whithney (for homogeneity), Spearman
(for independence and trend) and Runs (for randomness).
The SPI and EDI drought indices for this study have been
calculated on the basis of these rainfall data and using
Drought Index Package (DIP) software (Morid et al.,
2005). The brief description of the two indices is given
below.
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Figure 1. A schematic map of the Tehran Province. This figure is available in colour online at www.interscience.wiley.com/ijoc
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The SPI is calculated from precipitation records, which
is first fitted to gamma distribution and then trans-
formed into a normal distribution so that the mean SPI
is zero (McKee et al., 1993). The SPI may be com-
puted with different time steps (e.g. 1 month, 3 months.,
24 months). Positive and negative SPI values indicate
wet and dry conditions respectively. The ‘drought’ part
of the SPI range is split into ‘near normal’ (0.99 >
SPI > −0.99), ‘moderately dry’ (−1.0 > SPI > −1.49),
‘severely dry’ (−1.5 > SPI > −1.99) and ‘extremely
dry’ (SPI < −2.0) conditions. A drought event starts
when SPI value reaches −1.0 and ends when SPI
becomes positive again.

Unlike most other drought indices, the EDI in its
original form (Byun and Wilhite, 1996) is calculated
with a daily time step. However, its principles can be
used similarly with monthly time step data as has been
described in Smakhtin and Hughes (2007). The EDI
is a function of precipitation needed for a return to
normal conditions (PRN), i.e. for the recovery from the
accumulated deficit since the beginning of a drought.
PRN, in turn, is related to monthly effective precipitation
(EP) – a function of the current month’s rainfall and
weighted rainfall over a defined preceding period. If Pm
is the rainfall m-1 months before the current month and
N is the duration of preceding period then the EP for the
current month is

EP =
N∑

m=1

[

(

m∑

i=1

Pm)/m

]

(1)

For example, if N = 3 then EP = P1 + (P1 + P2)/2 +
(P1 + P2 + P3)/3, where P1, P2 and P3 are precipitation
values during the current month, previous month and
two months before respectively. The mean and standard
deviations of the EP values for each month are then
calculated and the time series of EP values is converted
to deviations from the mean (DEP). PRN values are then
calculated as:

PRN = DEP/
∑

(1/N) (2)

The summation term is the sum of the reciprocals of
all the months in the duration N (i.e. for N = 3 months,
this term will be equal to: 1/1 + 1/2 + 1/3). Finally the
EDI is calculated as

EDI = PRN/Std(PRN) (3)

where Std (PRN) is the standard deviation of the relevant
month’s PRN values. In these calculations, no normal-
ization of the index or rainfall data is performed and
therefore the skewness of the original time series is pre-
served. This means that positively skewed rainfall data
can result in a larger range of positive EDI values than
the range of negative EDI values. This is not, how-
ever, seen as a critical issue as the negative values are
the important ones in that they represent the ‘rainfall’
that is required for a return to normal from a drought.

The EDI varies in the range from −2.5 to 2.5. Simi-
larly to the SPI, it has thresholds indicating the range of
dryness/wetness. The ‘drought range’ of the EDI indi-
cates extremely dry conditions at EDI < −2.5, severe
drought at −1.5 > EDI > 2.49 and moderate drought at
−0.7 > EDI > −1.49. Near normal conditions are indi-
cated by −0.69 < EDI < 0.69.

Large–scale climatic indices

The Southern Oscillation Index (SOI) is an index which
is used to quantify the strength of an ENSO event. It is
calculated as the difference between the sea level pressure
at Tahiti and Darwin, Australia (Philander, 1990). The
NAO phenomenon is quantitatively described by the
NAO index, which is a normalized pressure difference
between measurements at the Azores and Iceland. The
index varies from year to year, but also exhibits a
tendency to remain in one phase for intervals lasting
for several years (Hurrell, 1995). Modarres Pour (1995)
showed the correlation between the SOI and rainfall in
the Tehran province of Iran and Koureh Pazan (2003)
reported the correlation of this index with the occurrence
of dry years in parts of Iran. The monthly values of the
SOI and NAO from 1969 to 2000 have been obtained
from the Internet at www.cru.uea.ac.uk/cru/data.

Artificial neural network (ANN)

The ANN is an information processing approach that
resembles the structure and operation of the brain. The
approach was developed in the 1940s by McCulloch
and Pitts (1943) and gradually progressed after that with
advances in calibration methodologies (Rumelhart et al.,
1986). Given sufficient data and complexity, ANN can
be designed to model any relationship between a series
of independent and dependent variables – inputs and
outputs to the network respectively (Hornik et al., 1990;
Luk et al., 2000). One of the advantages of the ANN
technique is that there is no need for the modeler to fully
define the intermediate relationships (physical processes)
between inputs and outputs (Morid et al., 2002; Anctila
et al., 2004; Dawson et al., 2006). This feature makes
ANNs particularly suitable for the analysis of complex
processes, like drought forecasting, where relationships
of a large number of input variables with the output
need to be explored. Although there is now a significant
number of network types and training algorithms, this
paper employs the Multi-Layer Perceptron (MLP) – the
most widespread (in hydrological research) topological
tool at present (Coulibaly et al., 2000; Maier and Dandy,
2000).

In the network structure, the neurons are arranged in
interconnected groups called layers. Every ANN include:
(1) input layer(s) – where data are introduced to the
network, (2) hidden layer(s) – where data are processed,
and (3) output layer(s) – where the results for the given
inputs are produced. A neuron computes its output
response based on the weighted sum of all its inputs
according to an activation function.
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RESULTS AND DISCUSSION

Drought forecasting models

To predict the future values of the SPI and the EDI,
the inputs to the networks are represented by various
combinations of their present and previous values with
different time lags supplemented by present and past
values of actual precipitation, SOI and NOA. All input
and output values are standardized to range between
FMIN and FMAX (FMIN = 0 .1 and FMAX < 1 )
rather than between zero and one, so that

Xn = FMIN + (Xu − f act min)

(f act max −f act min)

× (FMAX − FMIN) (4)

Where Xu and Xn represent the original variable and
the standardized value respectively, while ‘fact max’ and
‘fact min’ are the maximum and the minimum values
present in the original X vector. Caution should be
exercised while selecting the values of FMIN and FMAX
as, on the one hand, reduction of the range to a very small
value will have a negative influence on training while, in
contrast, the amount of allowed extrapolation should not
exceed a certain limit (Sajikumar and Thandaveswara,
1999). For the current case, the values of FMIN = 0 .1
and FMAX = 0 .9 were associated with better results.

Establishing the appropriate number of neurons and
hidden layers (an ANN ‘architecture’) are the main two
issues in setting up the ANN. There exists no systematic
way by which to establish a suitable ANN architecture.
Networks that are too small and simple can lead to the
under-fitting, while networks that are too complex tend to
over-fit the training pattern (Dawson and Wilby, 1998). In
the present study, different architectures have been exam-
ined in which various combinations of hidden layers and
neurons have been tested. Most of the resulting architec-
tures are simple which allows the over-fitting of networks
to be avoided (As an example, Table I for Mehrabad
Station). For complex architectures, it is recommended
to apply some re-sampling method like cross validation,
stopped training approach or bootstrapping (Coulibaly
et al., 2000; Nayaka et al., 2004).

Also, through testing various networks and learning
methodologies, the feed forward training with standard
back propagation algorithm was found to be the most
suitable. The years from 1970 to 1993 were set for
training and the years from 1994 to 2000 – for validation
of the networks. The performance of the networks
was evaluated using by R2, RMSE and MAE that are
commonly used for such validation. Altogether over
20 different network models have been tested for the
forecasting of each index – the EDI and the SPI. The
example set of models for the EDI, which have been
found to exhibit a better performance are:

E(t+n) = f (R, Rt−1, Rt−2) Input model 1

E(t+n) = f (Sot , Sot−1, Sot−2) Input model 2

Table I. Results of EDI forecasting (six months in advance) at
Mehrabad Station.

Training Validation

Input
model

Architec-
turea

R2 RMSE MAE R2 RMSE MAE

1 5-2-1 0.49 0.46 0.34 0.36 0.75 0.63
2 6-3-1 0.34 0.86 0.67 0.17 1.33 0.88
3 5-2-1 0.44 0.73 0.55 0.23 1.51 1.10
4 4-3-1 0.61 0.54 0.36 0.45 0.68 0.55
5 6-2-1 0.57 0.42 0.60 0.47 0.62 0.45
6 6-4-1 0.41 0.79 0.90 0.19 1.11 0.70
7 4-3-1 0.31 0.88 0.50 0.11 1.21 0.75
8 5-4-1 0.45 0.92 0.75 0.18 1.01 0.88
9 5-6-1 0.84 0.36 0.24 0.79 0.55 0.33

a The three digits refer to numbers of neutrons in input, hidden and
output layers respectively. For example, an architecture 5-2-1 refers to
five neurons in the input layer, two neurons in the hidden layer and
one neuron in the output layer.

E(t+n) = f (Nt , Nt−1, Nt−2) Input model 3

E(t+n) = f (Et , Et−1, Et−2, Et−3)

Input model 4

E(t+n) = f ((Et , Et−1, Et−2), (Rt , Rt−1, Rt−2))

Input model 5

E(t+n) = f ((Et , Et−1, Et−2), (Sot , Sot−1, Sot−2))

Input model 6

E(t+n) = f ((Et , Et−1, Et−2), (Nt , Nt−1, Nt−2))

Input model 7

E(t+n) = f ((Et , Et−1, Et−2), (Rt , Rt−1, Rt−2),

(Sot , Sot−1, Sot−2)) Input model 8

E(t+n) = f ((Et , Et−1, Et−2, Et−12), (Rt , Rt−1))

Input model 9

where E is the EDI index, R is precipitation, So is SOI,
N is NAO and n is the time lag which is effectively
the lead time of the forecast. Similar steps have been
followed for the SPI forecasting. The following model
was found to be the best.

S(t+n) = f ((St , St−1, St−2, St−3, St−4, St−12),

(Rt , Rt−1)) Input model 10

where S is the SPI.

Analysis of models’ performance

The forecast lead times varied from 1 to 12 months.
Because it is the medium-range and the long-range
forecasts that are critical for drought preparedness, we
further discuss only the results of forecasting with a
lead time of 3 months and longer. It is also virtually
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impossible to illustrate all results for all stations. We
therefore primarily use the results from the Mehrabad
station (Figure 1) to illustrate the main points. This
station is located in the Mehrabad International airport
and has the most reliable data.

The statistics presented in Table I indicate that among
the first four models (with single type input), the models
1 and 4 have performed better than 2 and 3. This
emphasizes the importance of rainfall and a drought index
itself for accurate forecasting. It also illustrates the lack
of impact of SOI and NAO on the performance of the
networks. Models 5 to 8, with different combinations of
inputs, have not resulted in accurate forecasts. However,
the forecasts have significantly improved with model
9, where the R2 values for training and validation
periods are 0.84 and 0.79 respectively. Model 9 retains a
relatively simple architecture and its main difference from
others is that it includes the same month of the past year.
Table I illustrates the results with a lead time of 6 months
only, but model 9 has also appeared to be superior to
others if used with other lead times. Figure 2 shows
the variation of R2, RMSE and MAE for forecasting of
the EDI with lead times of 1 to 12 months during the
validation period for six selected stations in the Province.

As in the case of the EDI forecasting, different models
have been tested for the SPI. Similarly, the SOI and NAO
have been found to have limited positive impact on the

accuracy of the forecasts. Model 10 was found to be the
best for the SPI forecasting. Its architecture is similar to
that of model 9 for the EDI, but more past information
have been used in it. Figure 3 illustrates the variations
of R2, RMSE and MAE for forecasting of the SPI with
different lead times during the validation period at six
selected stations.

Figure 4 displays the observed time series of the EDI
values against the forecasted ones with the lead times
of 3, 6, 9 and 12 months. In addition, the corresponding
scatter plots are also presented. Similar results of the SPI
forecasting are illustrated by Figure 5. In all cases the
significance level of R2 is 1%. The results effectively
illustrate the high accuracy of medium and long-range
forecasts of both drought indices at Mehrabad station.
The results at other stations are broadly similar.

Comparison of the EDI and SPI forecasts
Figure 6 presents the results of forecasting two indices
at Mehrabad Station with lead times of 1, 3, 6, 9 and
12 months. It is clear that all validation statistics – R2,
RMSE and MAE – are better for the EDI. This can
be related to the different response of the EDI and
the SPI to rainfall as illustrated by Figures 4 and 5
respectively. The EDI time series are more sluggish with
no immediate fluctuations. This pattern can be related
to the EP parameter of the EDI – which represents the

Firouzkoh

0.0
1 2 3 4 5 6 7 8 9 10 11 12

0.2
0.4
0.6
0.8
1.0
1.2

R2
RMSE
MAE

Month(a)

Abali

0.0
0.2
0.4
0.6
0.8
1.0
1.2

11 1210987654321
Month(b)

Ammameh

Month(c)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

11 1210987654321

Mehrabad

(d) Month

0.0
0.2
0.4
0.6
0.8
1.0
1.2

11 1210987654321

Siera

Month(e)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

11 1210987654321

Deh Someh

(f) Month

0.0
0.2
0.4
0.6
0.8
1.0
1.2

11 1210987654321

Figure 2. Evaluation of the EDI forecasts using R2, RMSE and MAE criteria for different future months during validation period at selected
stations.
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Figure 3. Evaluation of the SPI forecasts using R2, RMSE and MAE criteria for different future months during validation period at selected
stations.
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Figure 4. Comparison of observed and forecasted EDI at the Mehrabad station with lead times of 3 months(a), 6 months (b), 9 months (c) and
12 months (d), starting January 1995. This figure is available in colour online at www.interscience.wiley.com/ijoc
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Figure 5. Comparison of observed and forecasted SPI at the Mehrabad station with lead times of 3 months(a), 6 months (b), 9 months (c) and
12 months (d), starting January 1995. This figure is available in colour online at www.interscience.wiley.com/ijoc
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Figure 6. Comparison of the EDI and SPI forecasts at Mehrabad station.

‘memory’ of the previous rainfall events and ensures
more smooth response of the EDI to rainfall fluctuation.

To evaluate the accuracy of forecasts across events
of different extremity, the forecast values of indices
have been compared by classes of different wetness.
Such comparison may be seen as a way to assess the
operational accuracy of forecasts and has been used by
others for similar purposes (e.g. Zealand et al., 1999). In
Tables II and III, number 2 in the DC column (DC stands
for Difference in Classes) means that there are two classes
of differences between observed and forecasted values
(e.g Normal is observed and Sever Drought is forecasted
or vise versa). Table II shows that over the entire period
of record the EDI classes are correctly forecasted with
a lead time of 6 months for 72 to 89% of all cases (’
0′ DC row). The proportion of correct class forecasts
with the same lead time for the SPI ranges from 70 to
85% (Table III). Similarly, for the lead time of 9 months,

the correct class forecasts vary between stations from 59
to 80% for the EDI and from 59 to 72% for the SPI.
Finally, for the lead time of 12 months, the proportion
of correct class forecasts is 55–72% and 54–62% for
the EDI and the SPI respectively. It is also evident from
Tables II and III that the SPI forecasting errors are more
significant. While the EDI has had a maximum mismatch
of 2 classes, the SPI forecasting ‘makes mistakes’s of up
to 4 classes difference (e.g. the Siera station in Table III).

CONCLUSIONS

This paper described the procedure for drought fore-
casting using the ANN and its application in the
Tehran Province of Iran. Two rainfall-related drought
indices – the EDI and the SPI – have been used as the
predictants, while different combinations of the past

Table II. Percent of class differences between observed and forecasted EDI values.

Firouzkoh Abali Ammameh Mehrabad Siera Deh someh

DCa 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12

0 75 72 70 63 90 87 70 65 81 83 68 62 71 73 66 59 91 89 80 72 78 72 59 55
1 25 28 30 32 10 13 30 35 19 17 32 37 29 27 30 34 9 11 20 27 22 28 39 42
2 0 0 0 4 0 0 0 0 0 0 0 1 0 0 4 7 0 0 0 1 0 0 1 3
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a DC: Difference between observed and forecasted dry or wet classes.

Table III. Percent of class differences between observed and forecasted SPI values.

Firouzkoh Abali Ammameh Mehrabad Siera Deh someh

DC 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12

0 73 70 59 56 85 83 70 59 86 83 72 62 76 76 68 61 83 85 62 55 80 82 65 54
1 25 25 28 24 13 14 20 28 13 15 24 18 23 23 23 25 14 10 24 21 18 15 23 31
2 2 4 6 10 2 3 7 11 1 1 4 15 1 1 7 10 2 4 8 14 2 3 8 11
3 0 0 7 10 0 0 3 1 0 0 0 4 0 0 3 4 1 1 6 7 0 0 4 3
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1
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drought indices, precipitation and large climate sig-
nals – SOI and NAO – have been used as predictors.
Over more than 25 different network models have been
tested for each drought index at six rainfall stations in
the Province with lead times from 1 to 12 months. The
best models in both cases are found to include a drought
index value from the corresponding month of the previ-
ous year. It is also established that SOI and NAO do not
have a significant forecasting capability in the study area.

The final, best ANN models, for both the EDI and
the SPI have a relatively simple architecture. Three layer
networks and maximum of six neurons for a hidden
layer appear to be sufficient for all stations and all lead
times. In drought forecasting, it is particularly important
to ensure that accurate medium and long-term forecasts
(with lead times of 3 to 12 months) are produced. The
best models developed in the paper result in R2 values
(e.g. for the lead time of 6 months) of 0.66 and 0.79 for
the SPI and the EDI respectively, which is indicative of
a high forecasting accuracy, particularly in the case of
the EDI.

Comparison of the EDI and the SPI forecasts has
shown that the EDI network model has a superior
performance over all lead times in terms of statistical
criteria used. It is also capable of accurately predicting
the pattern of wet and dry classes of the EDI. This is an
important outcome considering the need to avoid major
errors in and to ensure the consistency of operational
forecasts. Both models, however, have the structure of
inputs that does not vary with the lead time. This makes
both attractive for operational purposes.

It is important to note the superiority of the method-
ology described in the paper compared to ‘traditional’s
approaches, which normally evaluate the predictive
power of the ENSO or NAO phenomena. Such traditional
approaches can only indicate whether a future time step
(e,g, next 3 months) is likely to be wet or dry, while
the proposed method also gives an explicit indication of
the severity of a drought. Also, the proposed methodol-
ogy is effectively not geographically limited, compared
to ENSO- or NAO-based forecasts, which have varying
accuracy due to limited impacts of these phenomena in
many regions. It is imperative to test the approach sug-
gested in this paper at the scale of the entire country
and – if proved successful – build it into drought early
warning systems, which are currently emerging in Iran.
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